A study of the decay

\[\tau^- \rightarrow \pi^- \pi^0 \nu_\tau \]

using the BaBar detector

Mitchell Naisbit – Elba
1 - Contents

- Motivation for study
- Event selection
- Models of the Hadronic Current
- Smearing
- Results
- Conclusions
2 - Motivation

• Important uncertainty in calculations of \((g_\mu-2)\) arises from hadronic loop corrections:

• Experimentally determined \(\pi\pi\) spectral functions allow us to calculate these corrections.

• CMD-2 experiment measured \(e^+e^- \rightarrow \pi^+\pi^-\) cross section. ALEPH, CLEO and OPAL gave data on \(\tau^- \rightarrow \pi^-\pi^0\nu_\tau\) spectral function \(\rightarrow\) CVC allows us to relate the two results.

• After corrections made for isospin symmetry breaking effects the two data sets were seen to disagree below and around the \(\rho\) mass peak.

\(\tau^- \rightarrow \pi^-\pi^0\nu_\tau\)

BaBar’s high statistics make it ideal for studying \(\tau\) data.
3 - Event Selection

- Use 1-1 topology in CoM
- Require signal in one hemisphere of event and tag in other:

\[\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} \quad \text{SIGNAL} \]

\[\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau} \quad \text{TAG} \]

\[\rightarrow \mu^- \bar{\nu}_\mu \nu_{\tau} \]

Decay Cuts:
- \(\pi \) track ID
- Single \(\pi^0 \)
- 0.85 < Thrust < 0.985 (uds, bhabhas)
- \(E_{CM}(\pi) + E_{CM}(\pi^0) < 5.29 \text{GeV} \) (beam bckgnds)
- CMS Tag track momentum < 4 GeV/c (\(\mu \mu \) bckgnds)
- No unused neutrals with lab energy > 0.3 GeV (a\(_1\) tau bckgnds)
- \(E_{CM}(\pi) + E_{CM}(\pi^0) > 0.75 \text{GeV} \) (\(\gamma \gamma \) bckgnds)
4 - Invariant Mass Spectrum

- Form invariant mass of $\pi^{-}\pi^{0}$:

Electron Tag

$\epsilon = 1.22\%$

$\tau^{-} \rightarrow \pi^{-}\pi^{0}\nu_{\tau}$
5 - Spectrum II

\[\tau^- \rightarrow \pi^- \pi^0 \nu_\tau \]

\(\epsilon = 1.13\% \)
6 - Tag comparison

ratio as function of mass

Peak normalised overlay

$\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$
7 - $\tau^{-}\rightarrow\pi^{-}\pi^{0}\nu_{\tau}$

- Main contribution to $\pi^{-}\pi^{0}$ lineshape is from $\rho(770)$
- $\rho(1450)$ and $\rho(1700)$ resonances included in PDG but not precisely measured
- Many theoretical models available allowing fits to $\pi^{-}\pi^{0}$ partial width to determine contribution from each resonance

Perform fit to mass spectrum:

$$\frac{dn}{dm} = Nm \left(1 + \frac{2m^2}{M_{\tau}^2}\right) \left(1 - \frac{m^2}{M_{\tau}^2}\right)^2 \left(1 - \frac{4m_{\pi}^2}{m^2}\right)^{3/2} |F_{\pi}(m^2)|^2$$

- phase space
- pion form factor
8 - Spectral Function

- Model form factor \(F \) with Breit-Wigner functions:

\[
|F_\pi(m^2)|^2 = \left| \frac{B \text{W}_\rho + \beta e^{i\phi_\rho} B \text{W}_{\rho'} + \gamma e^{i\phi_{\rho'}} B \text{W}_{\rho''} + A e^{i\phi}}{1 + \beta + \gamma} \right|^2 + b
\]

- Use various models for the Breit-Wigners:

Kuhn and Santamaria (KS):

\[
\text{BW}_\rho = \frac{M_\rho^2}{(M_\rho^2 - m^2) - i\sqrt{m^2 \Gamma_\rho (m^2)}}
\]

Gounaris and Sakurai (GS):

\[
\text{BW}_\rho = \frac{M_\rho^2 + M_\rho \Gamma_\rho d}{(M_\rho^2 - m^2) + f(m^2) - i\sqrt{m^2 \Gamma_\rho (m^2)}}
\]
9 - Smearing

- The data invariant mass spectrum will be smeared by the detector resolution
 - migration or loss of events
- To account for this smearing use a smeared fit function in the process of making the fit
- Use Monte Carlo to determine the amount of smearing:

For each bin, \(i \), in generator level MC distribution fill a histogram, \(H_{ij} \), with the reconstructed mass of the \(n_i \) entries
10 - Smearing II

- Fit Gaussian to each histogram and plot sigma as a function of mass

\[\tau^- \rightarrow \pi^- \pi^0 \nu_\tau \]
11 - Smearing III

- Extract $\sigma(m)$ using a linear fit

- Allow amount of smearing to vary in fit using a floating scale factor

$$\sigma(m) = 0.00814 + 0.00857m$$

$$\sigma(m) = (1 + s)(0.00814 + 0.00857m)$$
12 - Smearing IV

- Convolve fit function with a mass dependent Gaussian

$$\frac{1}{\sqrt{2\pi} \sigma(m)} \exp\left(-\frac{(m-m')^2}{2\sigma(m)^2}\right)$$

Calculate unsmeared fit function, multiply each bin by mass dependent Gaussian and re-sum to give smeared function

- All parameters allowed to float in turn

Norm. = N
masses = M_ρ, M_ρ', M_ρ''
widths = Γ_ρ, Γ_ρ', Γ_ρ''
phases = ϕ_ρ, ϕ_ρ', ϕ_ρ''
couplings = β, γ, A
Smearing scale factor = s
Bkgrd = b
Mass dependent width exponent = λ
13 – KS Fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>20297 ± 49.423</td>
<td></td>
</tr>
<tr>
<td>(M_\rho)</td>
<td>0.75539 ± 0.00039053</td>
<td></td>
</tr>
<tr>
<td>(M_\rho')</td>
<td>1.2964 ± 0.0059416</td>
<td></td>
</tr>
<tr>
<td>(M_\rho'')</td>
<td>1.6402 ± 0.0074653</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_\rho)</td>
<td>0.14287 ± 0.00018715</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_\rho')</td>
<td>0.52167 ± 0.0052295</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_\rho'')</td>
<td>0.18733 ± 0.0047002</td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.21593 ± 0.0010583</td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-0.0534 ± 0.00131</td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>2.3396 ± 0.028196</td>
<td></td>
</tr>
<tr>
<td>(s)</td>
<td>0.14956 ± 0.021997</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>2.6797 ± 5.4526</td>
<td></td>
</tr>
</tbody>
</table>

\(\chi^2 = 1.814 \)

Fit range (0.4, 2)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value with Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>16900 ± 45.196</td>
</tr>
<tr>
<td>M_ρ</td>
<td>0.74359 ± 0.00017781</td>
</tr>
<tr>
<td>M_ρ'</td>
<td>1.1060 ± 0.0063427</td>
</tr>
<tr>
<td>M_ρ''</td>
<td>1.5673 ± 0.0047170</td>
</tr>
<tr>
<td>Γ_ρ</td>
<td>0.15825 ± 0.00025341</td>
</tr>
<tr>
<td>Γ_ρ'</td>
<td>0.83960 ± 0.013740</td>
</tr>
<tr>
<td>Γ_ρ''</td>
<td>0.49216 ± 0.010036</td>
</tr>
<tr>
<td>β</td>
<td>0.22196 ± 0.0011434</td>
</tr>
<tr>
<td>γ</td>
<td>-0.22577 ± 0.0010546</td>
</tr>
<tr>
<td>Λ</td>
<td>-0.22146 ± 0.0057674</td>
</tr>
<tr>
<td>ϕ_ρ'</td>
<td>103.19 ± 2.9447</td>
</tr>
<tr>
<td>ϕ_ρ''</td>
<td>109.66 ± 0.68011</td>
</tr>
<tr>
<td>ϕ</td>
<td>-137.97 ± 0.069106</td>
</tr>
<tr>
<td>λ</td>
<td>3.1479 ± 0.0086927</td>
</tr>
<tr>
<td>s</td>
<td>-0.017598 ± 0.021912</td>
</tr>
<tr>
<td>b</td>
<td>-2.8277 ± 7.2601</td>
</tr>
</tbody>
</table>

Fit range (0.3,2)

$\chi^2 = 1.383$
15 – Comments on fit

• KS model fits well to spectrum, but it is only a parameterisation
 - don’t expect a perfect fit to this high precision data over so many orders of magnitude.

• Scale factor to smearing is around 15%
 - parameters are correlated so fit can favour narrow resonances with higher smearing scale, or the opposite
 - this scale factor is just a temporary measure - not claiming MC smearing is 15% too low, just that our parameterisation of the smearing histograms needs to be improved = double Gaussian?

• Problems with fits
 - some convergence problems, and inconsistent fit parameters with unreliable errors.
16 - Conclusions

- Selection procedure developed to give high purity sample of $\tau^-\rightarrow\pi^-\pi^0\nu_\tau$ candidates
- Smearing technique developed to account for detector resolution effects and integrated into fitting procedure
- Invariant mass spectrum fitting procedure implemented giving good fit over 5 orders of magnitude
- Ongoing work to improve fits and determine ρ, ρ' etc. parameters
 - validating smearing technique and testing different fit functions
Extra Slides
1 - AWG Pi0 Selection

- $pi0AllLoose$
- No merged π^0s
- No dead/noisy channels
- Photon energy deposited in ≥ 2 crystals
- Lat 0.001–0.05
- $E_\gamma > 50$ MeV
- Split-off energy cut: 110 MeV
- Split-off distance cut: 25 cm
- Fit probability: $\chi^2 < 5.0$
- Combinatorics: keep best fit π^0
FCN = 68.92403
num fit points = 54
Num fit params = 16
DOF = 54 – 16 = 38
CHISQUARE = 1.814